আর্যভট্ট।।Arya Bhata।।গণিতবিদ আর্যভট্ট।।শূন্যের আবিষ্কারক।।পাই এর আবিষ্কারক।।

0
471

আর্যভট্ট (৪৭৬ – ৫৫০)

প্রাচীন ভারতের সবচেয়ে বিখ্যাত গণিতবিদদের মধ্যে একজন। ভারতের প্রথম কৃত্রিম উপগ্রহের নাম তার নামে “আর্যভট্ট” রাখা হয়।

আর্যভট্টের কাজ থেকে তার জন্মসাল সম্পর্কে সুস্পষ্ট তথ্য পাওয়া গেলেও তার জন্মস্থান নিয়ে সুবিশেষ কোন তথ্য পাওয়া যায়নি। আর্যভট্টের অন্যতম ভাষ্যকার প্রথম ভাস্করের ভাষ্য অনুযায়ী তার জন্ম হয়েছিল অশ্মকা নামের একটি জায়গায়। প্রাচীন বৌদ্ধ এবং হিন্দু রীতিতে এই জায়গাটিকে নর্মদা এবং গোদাবরী নদীর মধ্যবর্তী স্থানে দক্ষিণ গুজরাট এবং উত্তর মহারাষ্ট্রের আশেপাশের একটি জায়গা হিসেবে চিহ্নিত করা হয়।

কিছু তথ্যমতে জানা যায় যে তিনি উচ্চশিক্ষার জন্য কুসুমপুরায় গিয়েছিলেন। তিনি কুসুমপুরায়ই বসবাস করতেন,তার ভাষ্যকার প্রথম ভাস্কর এই স্থানকে পাটালিপুত্র নগরী অভিহিত করেছেন।তিনি কুসুমপুরের আর্যভ নামে খ্যাত ছিলেন। তার কাজের অধিকাংশই তিনি করেছিলেন নালন্দা বিশ্ববিদ্যালয়ে। এখানেই তিনি উচ্চ শিক্ষা গ্রহণ করেন। শিক্ষাশেষে তিনি ঐ বিশ্ববিদ্যালয়ে শিক্ষক হিসাবে যোগ দেন। কেউ কেউ বলেছেন, নালন্দা বিশ্ববিদ্যালয়ের প্রধান হিসেবেও আর্যভট্ট দায়িত্ব পালন করেছিলেন।

প্রধান অবদান
প্রাচীন ভারতীয় গণিতের ইতিহাসে আর্যভট্টের হাত ধরেই ক্লাসিকাল যুগ (কিংবা স্বর্ণযুগ) শুরু হয়। গণিত এবং জ্যোতির্বিদ্যা সংক্রান্ত আর্যভট্টের বিভিন্ন কাজ মূলত দুটি গ্রন্থে সংকলিত হয়েছে বলে জানা গেছে। এর মাঝে ‘আর্যভট্টীয়’ একটি, যেটি উদ্ধার করা গিয়েছে। এটি রচিত চার খণ্ডে, মোট ১১৮টি স্তোত্রে। অন্য যে কাজটি সম্পর্কে জানা যায় সেটি হল ‘আর্য-সিদ্ধান্ত’। আর্য-সিদ্ধান্তের কোন পাণ্ডুলিপি খুঁজে পাওয়া যায়নি, তবে বরাহমিহির, ব্রহ্মগুপ্ত এবং প্রথম ভাস্করের কাজে এটির উল্লেখ মেলে। আর্যভট্ট গ্রন্থ রচনা করেছেন পদবাচ্যের আকারে।

আর্যভট্টীয়

মাত্র ২৩ বছর বয়সে আর্যভট্ট এই গ্রন্থটি সংকলন করেন। এ চারটি অধ্যায়‌ দশগীতিকা, গণিতপাদ, কালক্রিয়াপদ ও গোলপাদ। দশগীতিকা, কালক্রিয়া ও গোলপাদ অধ্যায়ে গোলীয় ত্রিকোণমিতি ও জ্যোতির্বিদ্যা সংক্রান্ত বিষয়াবলী রয়েছে। অন্যদিকে গণিত পাদে আছে পাটীগণিত, বীজগণিত, সমতল ত্রিকোণমিতি, দ্বিঘাত সমীকরণ, প্রথম n সংখ্যক স্বাভাবিক সংখ্যার ঘাতবিশিষ্ট পদ সমূহের বর্গ ও ঘনের সমষ্টি এবং একটি সাইন অণুপাতের সারণি রয়েছ। তাছাড়া এই অধ্যায়ে সে সময়কার জনপ্রিয় জ্যোতিষচর্চার প্রয়োজনীয় ৩৩টি গাণিতিক প্রক্রিয়ার বর্ণনা রয়েছে। গণিতপাদে আর্যভট্ট পাই-এর মান তথা বৃত্তের পরিধির সঙ্গে এর ব্যাসের মান ৩.১৪১৬ হিসাবে চিহ্নিত করেন। তিনি ভারতবর্ষে শূন্যের প্রচলন করেন।

দশমিক সংখ্যা পদ্ধতি এবং শূন্য
আর্যভট্টের কাজে দশমিক সংখ্যা পদ্ধতির পূর্ণ ব্যবহার পাওয়া যায়। আর্যভট্ট অবশ্য তার কাজে প্রচলিত ব্রাহ্মী লিপি ব্যবহার করেননি। পদবাচ্যের আকারে গ্রন্থ রচনা করায় সংখ্যা উপস্থাপনের একটি নিজস্ব পদ্ধতি তৈরি করেছিলেন তিনি। সেখানে সংখ্যাকে শব্দের আকারে উপস্থাপন করা হত। ব্যঞ্জনবর্ণগুলোকে তিনি ব্যবহার করতেন বিভিন্ন অঙ্ক হিসেবে আর স্বরবর্ণগুলোর সাহায্যে বুঝিয়ে দিতেন যে কোন অঙ্কটি কোন অবস্থানে রয়েছে। সে দিক থেকে তার ব্যবহৃত দশমিক সংখ্যা ব্যবস্থা ঠিক আজকের দশমিক সংখ্যা ব্যবস্থার মত নয়, তবে পদ্ধতিগত বিবেচনায় আজকের দশমিক সংখ্যার সাথে সামঞ্জস্যপূর্ণ। তার দশমিক সংখ্যা পদ্ধতিতে শূন্য ছিল কিনা সে বিষয়ে দ্বন্দ্ব্ব রয়েছে। শূন্যের সমতুল্য একটি ধারণা তার কাজে ছিল, সেটিকে বলা হয়েছে ‘খ’ (শূণ্যতা অর্থে)। ‘খ’ এর ধারণাটি কোন অঙ্ক হিসেবে ছিল নাকি শূন্যস্থান জ্ঞাপক চিহ্ন হিসেবে ছিল সেটি নিয়ে বিতর্ক রয়েছে। প্রচলিত বইগুলোতে সেটিকে শূন্যস্থান জ্ঞাপক চিহ্ন হিসেবে চিহ্নিত করা হয়েছে, যদিও Georges Ifrah দাবি করেছেন যে আর্যভট্ট পরোক্ষভাবে সেটিকে একটি দশমিক অঙ্ক হিসেবেই ব্যবহার করতেন। তবে দশমিক পদ্ধতিকে ব্যবহার করে তিনিই প্রথম পূর্ণাঙ্গ গাণিতিক প্রক্রিয়া বর্ণনা করেন, এর মাঝে ছিল সংখ্যার বর্গমূল ও ঘনমূল নির্ণয়। এটিই ছিল দশমিক সংখ্যা ব্যবস্থাকে পূর্ণাঙ্গরূপে স্থাপিত করার জন্য সবচেয়ে বেশি জরুরি, কারণ স্থানাঙ্ক ব্যবস্থায় এ সংখ্যার উপস্থাপন বিভিন্ন সময়ে বিভিন্ন সভ্যতায় ব্যবহার করা হলেও স্থানাঙ্ক ব্যবস্থায় গাণিতিক প্রক্রিয়াগুলোর ব্যবহারটি প্রতিষ্ঠা করা হয়নি, সুতরাং এটির পদ্ধতিগত উপযোগিতা সম্পূর্ণরূপে অণুধাবিত হয়নি। সে সময় সবচেয়ে জরুরি ছিল দশমিক পদ্ধতি ব্যবহার করে পদ্ধতিগত সাধারণীকরণ নিশ্চিত করা, যেটি সর্বপ্রথম করেন আর্যভট্ট। তাই তিনিই পূর্ণাঙ্গ দশমিক সংখ্যা পদ্ধতি প্রবর্তনের কৃতিত্বের দাবিদার। ৪৯৮ সালের দিকের একটি কাজে আর্যভট্টের একটি কাজে দশমিক সংখ্যা ব্যবস্থার বিবৃতিতে স্থানম স্থানম দশ গুণম বাক্যাংশটি পাওয়া যায় যার অর্থ হল- স্থান থেকে স্থানে দশ গুণ করে পরিবর্তিত হয়। এখান থেকে স্পষ্টতই বর্তমান দশমিক সংখ্যা পদ্ধতির মূল বৈশিষ্ট্যের স্বীকৃতি মেলে।

ত্রিকোণমিতি
আর্যভট্টের দ্বিতীয় গুরুত্বপূর্ণ গাণিতিক অবদান হচ্ছে আধুনিক ত্রিকোণমিতির সূত্রপাত করা। ত্রিকোণমিতির ব্যবহারে আর্যভট্ট সাইন, ভারসাইন (Versine = ১ – Cosine), বিপরীত সাইনের ব্যবহার করেন। সূর্য সিদ্ধান্তে এ সংক্রান্ত কিছু কাজ থাকলেও আর্যভট্টের কাজে তার পূর্ণাঙ্গ বিবরণ মেলে। সাইন ফাংশনের জন্য যুগ্ম ও অর্ধ কোণের সূত্রগুলো তিনি জানতেন বলে ধারণা করা হয়। আর্যভট্টের ব্যবহার করা গুরুত্বপূর্ণ ত্রিকোণমিতিক সম্পর্কগুলোর একটি হল- sin (n+১)x কে sin x এবং sin (n-১)x এর সাহায্যে প্রকাশ করা। আর্যভট্ট একটি সাইন টেবিল তৈরি করেছিলেন, যেটিতে ৩ ডিগ্রি ৪৫ মিনিট পার্থক্যে ৯০ ডিগ্রি পর্যন্ত সাইন এবং ভারসাইনের মান উল্লেখ করা ছিল। তার ব্যবহার করা এই সূত্রটি দিয়ে খুব সহজেই এই সাইন টেবিলটি recursively তৈরি করে ফেলা সম্ভব। সেই সূত্রটি হল-

sin (n + ১) x – sin nx = sin nx – sin (n – ১) x – (১/২২৫)sin nx

আর্যভট্টের তৈরি করা সাইন টেবিলটি এখানে উল্লেখ করা হল। বলে রাখা যেতে পারে আর্যভট্ট তার সাইন টেবিলে সরাসরি sinθ এর বদলে Rsinθ ব্যবহার করেছেন। এখানে R দ্বারা একটি নির্দিষ্ট বৃত্তের ব্যাসার্ধ বোঝানো হচ্ছে। আর্যভট্ট এই ব্যাসার্ধের মান ব্যবহার করেছিলেন ৩৪৩৮, এর সম্ভাব্য কারণ হতে পারে যে আর্যভট্ট এক মিনিট পরিমাণ কোণের জন্য একক ব্যাসার্ধের বৃত্তে বৃত্তচাপের দৈর্ঘ্যকে এক একক হিসেবে ধরে নিয়েছিলেন। একটি বৃত্তের সম্পূর্ণ পরিধি তার কেন্দ্রে (৩৬০ × ৬০) = ২১৬০০ মিনিট কোণ ধারণ করে। সে হিসেবে বৃত্তের পরিধি হল ২১৬০০ একক এবং ঐ বৃত্তের ব্যাসার্ধ হবে ২১৬০০/২π, আর্যভট্টের হিসেবে পাওয়া π = ৩.১৪১৬ ব্যবহার করলে ব্যাসার্ধের মান প্রায় ৩৪৩৮ হয়।

তথ্যসূত্রঃ উইকিপিডিয়া

একটি উত্তর ত্যাগ

আপনার মন্তব্য লিখুন দয়া করে!
এখানে আপনার নাম লিখুন দয়া করে